Implantable Magnetic-Dielectric Composites for Prolonged Hyperthermia Treatment of Hepatic Lesions
نویسندگان
چکیده
The inefficiency and the low success rates of surgical resection and side effects of chemotherapy used in the treatment of hepatocellular carcinoma have elicited substantial research interest in alternative methods for treatment. Here we report the use of magnetic-dielectric composite of Chromium doped Iron Oxide (Cr0.2Fe1.8O3) – Polyvinylidene Fluoride (PVDF) for the hyperthermia treatment of hepatic lesions. The magnetic oxide was prepared by sol-gel processing route and the formed phase was characterized by X-Ray Diffraction. The composite was formed in Acetic Acid media where the magnetic oxide was embedded in the PVDF matrix. Surface morphology of the formed composite was studied using Scanning Electron Microscopy and biocompatibility was ensured by MTTAssay studies. In silico studies were carried out using Finite Element Method simulation to depict the conditions at which hyperthermia treatment may occur in the hepatic tissue.
منابع مشابه
Study on Fe3O4 Magnetic Nanoparticles Size Effect on Temperature Distribution of Tumor in Hyperthermia: A Finite Element Method
In recent years, Hyperthermia has been used as an emerging technique for cancer treatment, especially for localized tumors. One of the promising cancer treatment approaches is magnetic nanoparticle (MNPs) Hyperthermia. In this theoretical work, the temperature distribution of a common tumor over the different sizes of Fe3O4 magnetic nanoparticles, namely 25, 50, 100, and 200 nm, was stud...
متن کاملInduced tissue cell death by magnetic nanoparticle hyperthermia for cancer treatment: an in silico study
In this paper, we simulate magnetic hyperthermia process on a mathematical phantom model representing cancer tumor and its surrounding healthy tissues. The temperature distribution throughout the phantom model is obtained by solving the bio-heat equations and the consequent cell death amount is calculated using correlations between the tissue local temperature and the cell death rate. To have a...
متن کاملAn investigation of the effect of hyperthermia using iron and magnetic nanoparticles in cancer treatment
Introduction: hyperthermia using different methods such as microwave and magnetic waves is one of the methods to treat cancer. In this method, iron and magnetic nanoparticles are used to increase the temperature and increase the effect of hyperthermia as auxiliary treatment with chemotherapy and radiotherapy. In this study, the role of iron and magnetic nanoparticles have been ...
متن کاملEnhanced dielectric properties of poly(vinylidene fluoride) composites filled with nano iron oxide-deposited barium titanate hybrid particles
We report enhancement of the dielectric permittivity of poly(vinylidene fluoride) (PVDF) generated by depositing magnetic iron oxide (Fe3O4) nanoparticles on the surface of barium titanate (BT) to fabricate BT-Fe3O4/PVDF composites. This process introduced an external magnetic field and the influences of external magnetic field on dielectric properties of composites were investigated systematic...
متن کاملMagnetic Gel Composites for Hyperthermia Cancer Therapy
Hyperthermia therapy is a medical treatment based on the exposition of body tissue to slightly higher temperatures than physiological (i.e., between 41 and 46 °C) to damage and kill cancer cells or to make them more susceptible to the effects of radiation and anti-cancer drugs. Among several methods suitable for heating tumor areas, magnetic hyperthermia involves the introduction of magnetic mi...
متن کامل